Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 194
Filter
1.
Front Oncol ; 14: 1355643, 2024.
Article in English | MEDLINE | ID: mdl-38651157

ABSTRACT

Background: The low rates of durable response against relapsed/refractory multiple myeloma (RRMM) in recent studies prompt that chimeric antigen receptor (CAR)-T cell therapies are yet to be optimized. The combined anti-BCMA and anti-CD19 CAR-T cell therapy showed high clinical efficacy in several clinical trials for RRMM. We here conducted a meta-analysis to confirm its efficacy and safety. Methods: We collected data from Embase, Web of Science, PubMed, CNKI, Wanfang and Cochrane databases up to April 2023. We extracted and evaluated data related to the efficacy and safety of combined anti-BCMA and anti-CD19 CAR-T cell therapies in RRMM patients. The data was then analyzed using RevMan5.4 and StataSE-64 software. PROSPERO number was CRD42023455002. Results: Our meta-analysis included 12 relevant clinical trials involving 347 RRMM patients who were treated with combined anti-BCMA and anti-CD19 CAR-T cell therapies. For efficacy assessment, the pooled overall response rate (ORR) was 94% (95% CI: 91%-98%), the complete response rate (CRR) was 50% (95% CI: 29%-71%), and the minimal residual disease (MRD) negativity rate within responders was 73% (95% CI: 66%-80%). In terms of safety, the pooled all-grade cytokine release syndrome (CRS) rate was 98% (95% CI: 97%-100%), grade≥3 CRS rate was 9% (95% CI: 4%-14%), and the incidence of neurotoxicity was 8% (95% CI: 4%-11%). Of hematologic toxicity, neutropenia was 82% (95% CI: 75%-89%), anemia was 71% (95% CI: 53%-90%), thrombocytopenia was 67% (95% CI: 40%-93%) and infection was 42% (95% CI: 9%-76%). The median progression-free survival (PFS) was 12.97 months (95% CI: 6.02-19.91), and the median overall survival (OS) was 26.63 months (95% CI: 8.14-45.11). Conclusions: As a novel immunotherapy strategy with great potential, the combined anti-BCMA and anti-CD19 CAR-T cell therapy showed high efficacy in RRMM, but its safety needs further improvement. This meta-analysis suggests possible optimization of combined CAR-T therapy. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023455002.

3.
NPJ Vaccines ; 9(1): 64, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38509167

ABSTRACT

Despite prolonged surveillance and interventions, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses continue to pose a severe global health burden. Thus, we developed a chimpanzee adenovirus-based combination vaccine, AdC68-HATRBD, with dual specificity against SARS-CoV-2 and influenza virus. When used as a standalone vaccine, intranasal immunization with AdC68-HATRBD induced comprehensive and potent immune responses consisting of immunoglobin (Ig) G, mucosal IgA, neutralizing antibodies, and memory T cells, which protected the mice from BA.5.2 and pandemic H1N1 infections. When used as a heterologous booster, AdC68-HATRBD markedly improved the protective immune response of the licensed SARS-CoV-2 or influenza vaccine. Therefore, whether administered intranasally as a standalone or booster vaccine, this combination vaccine is a valuable strategy to enhance the overall vaccine efficacy by inducing robust systemic and mucosal immune responses, thereby conferring dual lines of immunological defenses for these two viruses.

4.
J Funct Biomater ; 15(3)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38535251

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection caused the COVID-19 pandemic, impacting the global economy and medical system due to its fast spread and extremely high infectivity. Efficient control of the spread of the disease relies on a fast, accurate, and convenient detection system for the early screening of the infected population. Although reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is the gold-standard method for SARS-CoV-2 RNA analysis, it has complex experimental procedures and relies on expensive instruments and professional operators. In this work, we proposed a simple, direct, amplification-free lateral flow immunoassay (LFIA) with dual-mode detection of SARS-CoV-2 RNA via direct visualization as well as fluorescence detection. The viral RNA was detected by the designed DNA probes to specifically hybridize with the conserved open reading frame 1ab (ORF1ab), envelope protein (E), and nucleocapsid (N) regions of the SARS-CoV-2 genome to form DNA-RNA hybrids. These hybrids were then recognized by the dual-mode gold nanoparticles (DMNPs) to produce two different readout signals. The fluorescence characteristics of different sizes of GNPs were explored. Under the optimized conditions, the LFIA presented a linear detection range of 104-106 TU/mL with a limit of detection (LOD) of 0.76, 1.83, and 2.58 × 104 TU/mL for lentiviral particles carrying SARS-CoV-2 ORF1ab, E, and N motifs, respectively, in the fluorescent mode, which was up to 10 times more sensitive than the colorimetric mode. Furthermore, the LFIA exhibited excellent specificity to SARS-CoV-2 in comparison with other respiratory viruses. It could be used to detect SARS-CoV-2 in saliva samples. The developed LFIA represents a promising and convenient point-of-care method for dual-mode, rapid detection of SARS-CoV-2, especially in the periods with high infectivity.

5.
BMC Neurol ; 24(1): 93, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38468256

ABSTRACT

BACKGROUND: Spinal muscular atrophy (SMA) is a rare autosomal recessive hereditary neuromuscular disease caused by survival motor neuron 1 (SMN1) gene deletion or mutation. Homozygous deletions of exon 7 in SMN1 result in 95% of SMA cases, while the remaining 5% are caused by other pathogenic variants of SMN1. METHODS: We analyzed two SMA-suspected cases that were collected, with no SMN1 gene deletion and point mutation in whole-exome sequencing. Exon 1 deletion of the SMN gene was detected using Multiplex ligation-dependent probe amplification (MLPA) P021. We used long-range polymerase chain reaction (PCR) to isolate the SMN1 template, optimized-MLPA P021 for copy number variation (CNV) analysis within SMN1 only, and validated the findings via third-generation sequencing. RESULTS: Two unrelated families shared a genotype with one copy of exon 7 and a novel variant, g.70919941_70927324del, in isolated exon 1 of the SMN1 gene. Case F1-II.1 demonstrated no exon 1 but retained other exons, whereas F2-II.1 had an exon 1 deletion in a single SMN1 gene. The read coverage in the third-generation sequencing results of both F1-II.1 and F2-II.1 revealed a deletion of approximately 7.3 kb in the 5' region of SMN1. The first nucleotide in the sequence data aligned to the 7385 bp of NG_008691.1. CONCLUSION: Remarkably, two proband families demonstrated identical SMN1 exon 1 breakpoint sites, hinting at a potential novel mutation hotspot in Chinese SMA, expanding the variation spectrum of the SMN1 gene and corroborating the specificity of isolated exon 1 deletion in SMA pathogenesis. The optimized-MLPA P021 determined a novel variant (g.70919941_70927324del) in isolated exon 1 of the SMN1 gene based on long-range PCR, enabling efficient and affordable detection of SMN gene variations in patients with SMA, providing new insight into SMA diagnosis to SMN1 deficiency and an optimized workflow for single exon CNV testing of the SMN gene.


Subject(s)
Multiplex Polymerase Chain Reaction , Muscular Atrophy, Spinal , Humans , DNA Copy Number Variations/genetics , Workflow , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/genetics , Motor Neurons , Exons/genetics , Survival of Motor Neuron 1 Protein/genetics
7.
Emerg Microbes Infect ; 13(1): 2290838, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38044872

ABSTRACT

Classic chimeric hemagglutinin (cHA) was designed to induce immune responses against the conserved stalk domain of HA. However, it is unclear whether combining more than one HA head domain onto one stalk domain is immunogenic and further induce immune responses against influenza viruses. Here, we constructed numerous novel cHAs comprising two or three fuzed head domains from different subtypes grafted onto one stalk domain, designated as cH1-H3, cH1-H7, cH1-H3-H7, and cH1-H7-H3. The three-dimensional structures of these novel cHAs were modelled using bioinformatics simulations. Structural analysis showed that the intact neutralizing epitopes were exposed in cH1-H7 and were predicted to be immunogenic. The immunogenicity of the cHAs constructs was evaluated in mice using a chimpanzee adenoviral vector (AdC68) vaccine platform. The results demonstrated that cH1-H7 expressed by AdC68 (AdC68-cH1-H7) induced the production of high levels of binding antibodies, neutralizing antibodies, and hemagglutinin inhibition antibodies against homologous pandemic H1N1, drifted seasonal H1N1, and H7N9 virus. Moreover, vaccinated mice were fully protected from a lethal challenge with the aforementioned influenza viruses. Hence, cH1-H7 cHAs with potent immunogenicity might be a potential novel vaccine to provide protection against different subtypes of influenza virus.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H7N9 Subtype , Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Animals , Mice , Humans , Influenza Vaccines/genetics , Antibodies, Viral , Influenza A Virus, H1N1 Subtype/genetics , Hemagglutinins , Antibodies, Neutralizing , Hemagglutinin Glycoproteins, Influenza Virus
8.
Nat Commun ; 14(1): 8440, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38114531

ABSTRACT

Autophagy receptor NDP52 triggers bacterial autophagy against infection. However, the ability of NDP52 to protect against viral infection has not been established. We show that NDP52 binds to envelope proteins of hepatitis B virus (HBV) and triggers a degradation process that promotes HBV clearance. Inactivating NDP52 in hepatocytes results in decreased targeting of viral envelopes in the lysosome and increased levels of viral replication. NDP52 inhibits HBV at both viral entry and late replication stages. In contrast to NDP52-mediated bacterial autophagy, lysosomal degradation of HBV envelopes is independent of galectin 8 and ATG5. NDP52 forms complex with Rab9 and viral envelope proteins and links HBV to Rab9-dependent lysosomal degradation pathway. These findings reveal that NDP52 acts as a sensor for HBV infection, which mediates a unique antiviral response to eliminate the virus. This work also suggests direct roles for autophagy receptors in other lysosomal degradation pathways than canonical autophagy.


Subject(s)
Hepatitis B virus , Hepatitis B , Humans , Hepatitis B virus/physiology , Hepatocytes/metabolism , Autophagy/physiology , Lysosomes/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/metabolism , Virus Replication/physiology
9.
iScience ; 26(10): 107939, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37810255

ABSTRACT

Neovascular age-related macular degeneration AMD (nAMD) is characterized by choroidal neovascularization (CNV) and could lead to irreversible blindness. However, anti-vascular endothelial growth factor (VEGF) therapy has limited efficacy. Therefore, we generated a chimpanzee adenoviral vector (AdC68-PFC) containing three genes, pigment endothelial-derived factor (PEDF), soluble fms-like tyrosine kinase-1 (sFlt-1), and soluble forms of CD59 (sCD59), to treat nAMD. The results showed that AdC68-PFC mediated a strong onset of PEDF, sFlt-1, and sCD59 expression both in vivo and in vitro. AdC68-PFC showed preventive and therapeutic effects following intravitreal (IVT) injection in the laser-induced CNV model and very low-density lipoprotein receptor-deficient (Vldlr-/-) mouse model. In vitro assessment indicated that AdC68-PFC had a strong inhibitory effect on endothelial cells. Importantly, the safety test showed no evidence of in vivo toxicity of adenovirus in murine eyes. Our findings suggest that AdC68-PFC may be a long-acting and safe gene therapy vector for future nAMD treatments.

10.
J Virol ; 97(10): e0072423, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37706688

ABSTRACT

IMPORTANCE: The development of broad-spectrum SARS-CoV-2 vaccines will reduce the global economic and public health stress from the COVID-19 pandemic. The use of conserved T-cell epitopes in combination with spike antigen that induce humoral and cellular immune responses simultaneously may be a promising strategy to further enhance the broad spectrum of COVID-19 vaccine candidates. Moreover, this research suggests that the combined vaccination strategies have the ability to induce both effective systemic and mucosal immunity, which may represent promising strategies for maximizing the protective efficacy of respiratory virus vaccines.


Subject(s)
COVID-19 Vaccines , COVID-19 , Vaccines, Combined , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Immunity, Cellular , Immunization , Pandemics/prevention & control , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination
11.
J Cancer Res Clin Oncol ; 149(17): 15511-15524, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37646827

ABSTRACT

PURPOSE: Skin disease is a prevalent type of physical ailment that can manifest in multitude of forms. Many internal diseases can be directly reflected on the skin, and if left unattended, skin diseases can potentially develop into skin cancer. Accurate and effective segmentation of skin lesions, especially melanoma, is critical for early detection and diagnosis of skin cancer. However, the complex color variations, boundary ambiguity, and scale variations in skin lesion regions present significant challenges for precise segmentation. METHODS: We propose a novel approach for melanoma segmentation using a dual-branch interactive U-Net architecture. Two distinct sampling strategies are simultaneously integrated into the network, creating a vertical dual-branch structure. Meanwhile, we introduce a novel dual-channel symmetrical convolution block (DCS-Conv), which employs a symmetrical design, enabling the network to exhibit a horizontal dual-branch structure. The combination of the vertical and horizontal distribution of the dual-branch structure enhances both the depth and width of the network, providing greater diversity and rich multiscale cascade features. Additionally, this paper introduces a novel module called the residual fuse-and-select module (RFS module), which leverages self-attention mechanisms to focus on the specific skin cancer features and reduce irrelevant artifacts, further improving the segmentation accuracy. RESULTS: We evaluated our approach on two publicly skin cancer datasets, ISIC2016 and PH2, and achieved state-of-the-art results, surpassing previous outcomes in terms of segmentation accuracy and overall performance. CONCLUSION: Our proposed approach holds tremendous potential to aid dermatologists in clinical decision-making.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Skin Neoplasms/diagnostic imaging , Skin , Melanoma/diagnostic imaging , Clinical Decision-Making
12.
Neural Netw ; 165: 491-505, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37336034

ABSTRACT

MicroRNAs (miRNA) play critical roles in diverse biological processes of diseases. Inferring potential disease-miRNA associations enable us to better understand the development and diagnosis of complex human diseases via computational algorithms. The work presents a variational gated autoencoder-based feature extraction model to extract complex contextual features for inferring potential disease-miRNA associations. Specifically, our model fuses three different similarities of miRNAs into a comprehensive miRNA network and then combines two various similarities of diseases into a comprehensive disease network, respectively. Then, a novel graph autoencoder is designed to extract multilevel representations based on variational gate mechanisms from heterogeneous networks of miRNAs and diseases. Finally, a gate-based association predictor is devised to combine multiscale representations of miRNAs and diseases via a novel contrastive cross-entropy function, and then infer disease-miRNA associations. Experimental results indicate that our proposed model achieves remarkable association prediction performance, proving the efficacy of the variational gate mechanism and contrastive cross-entropy loss for inferring disease-miRNA associations.


Subject(s)
MicroRNAs , Humans , MicroRNAs/genetics , Genetic Predisposition to Disease , Algorithms , Computational Biology/methods
13.
Metabolism ; 144: 155584, 2023 07.
Article in English | MEDLINE | ID: mdl-37150437

ABSTRACT

The neovascular form of age-related macular degeneration (nvAMD) is the leading cause of blindness in the elderly population. Vascular endothelial growth factor (VEGF) plays a crucial role in choroidal neovascularization (CNV), and anti-VEGF therapy is recommended as first-line therapy for nvAMD. However, many patients do not radically benefit from this therapy. Epidemiological data suggest that physical exercise is beneficial for many human diseases, including nvAMD. Yet, its protective mechanism and therapeutic potential remain unknown. Here, using clinical samples and mouse models, we found that exercise reduced CNV and enhanced anti-angiogenic therapy efficacy by inhibiting AIM2 inflammasome activation. Furthermore, transfusion of serum from exercised mice transferred the protective effects to sedentary mice. Proteomic data revealed that exercise promoted the release of adiponectin, an anti-inflammatory adipokine from adipose tissue into the circulation, which reduced ROS-mediated DNA damage and suppressed AIM2 inflammasome activation in myeloid cells of CNV eyes through AMPK-p47phox pathway. Simultaneous targeting AIM2 inflammasome product IL-1ß and VEGF produced a synergistic effect for treating choroidal neovascularization. Collectively, this study highlights the therapeutic potential of an exercise-AMD axis and uncovers the AIM2 inflammasome and its product IL-1ß as potential targets for treating nvAMD patients and enhancing the efficacy of anti-VEGF monotherapy.


Subject(s)
Choroidal Neovascularization , Macular Degeneration , Aged , Humans , Mice , Animals , Inflammasomes , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/therapeutic use , Proteomics , Choroidal Neovascularization/prevention & control , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/etiology , Myeloid Cells/metabolism , Macular Degeneration/therapy , Macular Degeneration/complications , Macular Degeneration/metabolism , DNA-Binding Proteins
14.
Cell Death Discov ; 9(1): 171, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37202386

ABSTRACT

Oncolytic viruses have recently been proven to be an effective and promising cancer therapeutic strategy, but there is rare data about oncolytic therapy in esophageal squamous cell carcinoma (ESCC), especially oncolytic measles virotherapy. Therefore, this study aimed to explore whether the recombinant measles virus vaccine strain rMV-Hu191 has an oncolytic effect against ESCC cells in vitro and in vivo and elucidate the underlying mechanisms. Our results showed that rMV-Hu191 could efficiently replicate in and kill ESCC cells through caspase-3/GSDME-mediated pyroptosis. Mechanistically, rMV-Hu191 triggers mitochondrial dysfunction to induce pyroptosis, which is mediated by BAK (BCL2 antagonist/killer 1) or BAX (BCL2 associated X). Further analysis revealed that rMV-Hu191 activates inflammatory signaling in ESCC cells, which may enhance the oncolytic efficiency. Moreover, intratumoral injection of rMV-Hu191 induced dramatic tumor regression in an ESCC xenograft model. Collectively, these findings imply that rMV-Hu191 exhibits an antitumor effect through BAK/BAX-dependent caspase-3/GSDME-mediated pyroptosis and provides a potentially promising new therapy for ESCC treatment.

15.
Comput Biol Med ; 159: 106923, 2023 06.
Article in English | MEDLINE | ID: mdl-37075601

ABSTRACT

The main purpose of multimodal medical image fusion is to aggregate the significant information from different modalities and obtain an informative image, which provides comprehensive content and may help to boost other image processing tasks. Many existing methods based on deep learning neglect the extraction and retention of multi-scale features of medical images and the construction of long-distance relationships between depth feature blocks. Therefore, a robust multimodal medical image fusion network via the multi-receptive-field and multi-scale feature (M4FNet) is proposed to achieve the purpose of preserving detailed textures and highlighting the structural characteristics. Specifically, the dual-branch dense hybrid dilated convolution blocks (DHDCB) is proposed to extract the depth features from multi-modalities by expanding the receptive field of the convolution kernel as well as reusing features, and establish long-range dependencies. In order to make full use of the semantic features of the source images, the depth features are decomposed into multi-scale domain by combining the 2-D scale function and wavelet function. Subsequently, the down-sampling depth features are fused by the proposed attention-aware fusion strategy and inversed to the feature space with equal size of source images. Ultimately, the fusion result is reconstructed by a deconvolution block. To force the fusion network balancing information preservation, a local standard deviation-driven structural similarity is proposed as the loss function. Extensive experiments prove that the performance of the proposed fusion network outperforms six state-of-the-art methods, which SD, MI, QABF and QEP are about 12.8%, 4.1%, 8.5% and 9.7% gains, respectively.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Semantics
16.
Neurol Ther ; 12(3): 961-976, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37103747

ABSTRACT

INTRODUCTION: Spinal muscular atrophy (SMA) can cause multiple system dysfunction, especially lipid metabolic disorders, for which management strategies are currently lacking. Microbes are related to metabolism and the pathogenesis of neurological diseases. This study aimed to preliminarily explore the alterations in the gut microbiota in SMA and the potential relationship between altered microbiota and lipid metabolic disorders. METHODS: Fifteen patients with SMA and 17 gender- and age-matched healthy controls were enrolled in the study. Feces and fasting plasma samples were collected. 16S ribosomal RNA sequencing and nontargeted metabolomics analysis were performed to explore the correlation between microbiota and differential lipid metabolites. RESULTS: No significant difference was found in microbial diversity (α- and ß-diversity) between the SMA and control groups, with both groups having a relatively similar community structure. However, compared to the control group, the SMA group showed an increased relative abundance of the genera Ruminiclostridium, Gordonibacter, Enorma, Lawsonella, Frisingicoccus, and Anaerofilum and a decreased abundance of the genera Catabacter, Howardella, Marine_Methylotrophic_Group_3, and Lachnospiraceae_AC2044_group. The concurrent metabolomic analysis showed that the SMA group had 56 different kinds of lipid metabolite levels than did the control group. Additionally, the Spearman correlation suggested a correlation between the altered differential lipid metabolites and the above-mentioned altered microbiota. CONCLUSIONS: The gut microbiome and lipid metabolites differed between the patients with SMA and the control subjects. The altered microbiota may be related with the lipid metabolic disorders in SMA. However, further study is necessary to clarify the mechanism of lipid metabolic disorders and develop management strategies to improve the related complications in SMA.

17.
IEEE J Biomed Health Inform ; 27(7): 3489-3500, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37023161

ABSTRACT

Medical image fusion technology is an essential component of computer-aided diagnosis, which aims to extract useful cross-modality cues from raw signals to generate high-quality fused images. Many advanced methods focus on designing fusion rules, but there is still room for improvement in cross-modal information extraction. To this end, we propose a novel encoder-decoder architecture with three technical novelties. First, we divide the medical images into two attributes, namely pixel intensity distribution attributes and texture attributes, and thus design two self-reconstruction tasks to mine as many specific features as possible. Second, we propose a hybrid network combining a CNN and a transformer module to model both long-range and short-range dependencies. Moreover, we construct a self-adaptive weight fusion rule that automatically measures salient features. Extensive experiments on a public medical image dataset and other multimodal datasets show that the proposed method achieves satisfactory performance.


Subject(s)
Diagnosis, Computer-Assisted , Electric Power Supplies , Humans , Information Storage and Retrieval , Image Processing, Computer-Assisted
18.
Ann Transl Med ; 11(2): 52, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36819520

ABSTRACT

Background: Although Andrographis paniculata (AP) exhibits various biological functions such as anticancer, anti-inflammatory, antimalarial, antimicrobial, antioxidant, cardioprotective and immunomodulatory, its role in estrogen deficiency-related osteoporosis remains unclear. Methods: Ovariectomy (OVX)-induced estrogen deficiency-related osteoporotic mouse models and sham mouse models were established using 8-week-old female C57BL/6J mice. Micro-computed tomography (µCT) scanning was performed to assess the skeletal phenotype. The differentiation potential of bone marrow mesenchymal stem cells (BMSCs) from the OVX and sham groups was assessed by osteogenic or adipogenic induction medium in vitro. To verify the effects of AP, alizarin red S (ARS) staining, alkaline phosphatase (ALP) staining and oil red O (ORO) staining, reverse transcription assay and quantitative real-time polymerase chain reaction were applied to detect the lineage differentiation ability of BMSCs. Results: µCT scanning showed that AP treatment attenuated the osteoporotic phenotype in OVX-induced estrogen deficiency-related osteoporotic mice. The results of ARS staining, ALP staining, ORO staining and quantitative real-time polymerase chain reaction indicated that BMSCs from OVX-induced osteoporotic mice displayed a significant reduction in osteogenic differentiation and an increase in adipogenic differentiation, which could be reversed by AP treatment. Conclusions: Our findings suggested that AP regulated the differentiation potential of BMSCs and ameliorated the development of estrogen deficiency-related osteoporosis, which might be an effective therapeutic method for estrogen deficiency-related osteoporosis.

19.
Ann Transl Med ; 11(3): 155, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36846011

ABSTRACT

Background: Osteonecrosis of the femoral head (ONFH) is a common and stubborn disease. The main causes are venous stasis of the femoral head, arterial blood supply damage, bone cell and bone marrow death, and bone tissue necrosis and subsequent repair obstacles. Over the past 22 years, the number of papers on ONFH has, overall, continued to increase. Methods: Using bibliometrics, we investigated the trends, frontiers, and hotspots of global scientific output in the past 22 years. We searched Science Citation Index Expanded (SCIE) of the Web of Science Core Collection (WoSCC) and retrieved information associated with papers and records published between 2000 and 2021. We used VOSviewer and CiteSpace to conduct bibliometric analysis and visual analysis on the overall distribution of annual output, major countries, active institutions, journals, authors, commonly cited literature, and keywords. The impact and quality of the papers were assessed using the global citation score (GCS). Results: We retrieved a total of 2006 articles and reviews. Over the past 22 years, the number of publications (NP) increased. China ranked first in terms of NP, while the United States had the highest h-index and the highest number of citations (NC). Shanghai Jiao Tong University and International Orthopaedics were the institution and periodical, respectively. The paper written by Mont et al. in 2006 had the highest total GCS score, at 379. The top three keywords were "ischemic necrosis", "osteonecrosis", and "hip joint". Although there was a fluctuation in publications associated with ONFH, overall, the NP increased. China was the most prolific in this area, while the United States was the most influential country. The top 3 authors in terms of NP were Zhang, Motomura, and Zhao. Areas of focus in ONFH over recent years include signal pathway, genetic differentiation, glucocorticoid-induced osteogenesis, induced ischemic necrosis and osteogenesis. Conclusions: Our bibliometrics analysis revealed the research hotspots and rapid development trends of ONFH research in the past 22 years. The most critical indicators [researchers, countries, research institutions, and journals publishing osteonecrosis of the femoral head (ONFH) research] relevant to the research hotspots in the field of ONFH research were analyzed.

20.
Nat Commun ; 14(1): 642, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36746963

ABSTRACT

Pathogenic viral infections represent a major challenge to human health. Host immune responses to respiratory viruses are closely associated with microbiome and metabolism via the gut-lung axis. It has been known that host defense against influenza A virus (IAV) involves activation of the NLRP3 inflammasome, however, mechanisms behind the protective function of NLRP3 are not fully known. Here we show that an isolated bacterial strain, Bifidobacterium pseudolongum NjM1, enriched in the gut microbiota of Nlrp3-/- mice, protects wild-type but not Nlrp3 deficient mice against IAV infection. This effect depends on the enhanced production of type I interferon (IFN-I) mediated by NjM1-derived acetate. Application of exogenous acetate reproduces the protective effect of NjM1. Mechanistically, NLRP3 bridges GPR43 and MAVS, and promotes the oligomerization and signalling of MAVS; while acetate enhances MAVS aggregation upon GPR43 engagement, leading to elevated IFN-I production. Thus, our data support a model of NLRP3 mediating enhanced induction of IFN-I via acetate-producing bacterium and suggest that the acetate-GPR43-NLRP3-MAVS-IFN-I signalling axis is a potential therapeutic target against respiratory viral infections.


Subject(s)
Influenza A virus , Microbiota , Humans , Animals , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Acetates/pharmacology , Antiviral Agents
SELECTION OF CITATIONS
SEARCH DETAIL
...